E-Commerce Application Using a Collaborative Filtering Algorithm

Authors

DOI:

https://doi.org/10.5281/zenodo.8264179

Keywords:

Recommender System, Collaborative Filtering, K-NN Algorithm, E-Commerce Applications

Abstract

With the current growth of Information and Communication Technology (ICT) and the storage capacity of computational devices, more robust applications have been developed. Such is the case of recommender systems, which allow users to see products (or items) that are likely to be of their interest from a large amount of information available in these sites, where the number of products is generally very large. To make these recommendations to a user, the recommender systems based on collaborative filtering uses information of similar users, assuming that a similar user is one who has qualified same items with similar qualifications. To find similar users, different approaches have been used; one of these approaches have been to use the classification algorithms. In this paper the k-nearest neighbors (k-NN) classifier was selected, due to its speed and good performance. To evaluate the degree of similarity between users, Pearson correlation function was selected. The proposed recommender system is implemented in a web application of clothes.

Metrics

Metrics Loading ...

Author Biographies

Yeimi Duran Xochimitl, Instituto Tecnológico de Puebla

 Estudiante de Maestría en Ingeniería en el Instituto Tecnológico de Puebla (ITP)

Selene Hernández Rodríguez, Instituto Tecnológico de Puebla

Docente en el Instituto Tecnológico de Puebla (ITP) en la División de Estudios de Posgrado e Investigación (DEPI)

References

Adomavicius, G. and Tuzhilin, A. (2005). ―Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions‖. Recuperado de: http://dl.acm.org/citation.cfm?id=1070611.1070751. Fecha de consulta: 06/12/12

Bell, Robert M., and Koren, Yehuda. (Octubre 2007). ―Scalable collaborative filtering with jointly derived neighborhood interpolation weights‖. Recuperado de: http://ieeexplore.ieee.org. Fecha de consulta: 06/12/12.

Bennett, James., Lanning, Stan. (2007). ―The netflix prize‖. Recuperado de: http://www.cs.uic.edu/~liub/KDD-cup-2007/NetflixPrize-description. Fecha de consulta: 20/04/13.

Bilsus, D., Pazzani, Michael J. (1998). ―Learning collaborative information filters‖. Recuperado de: http://www.aaai.org/Papers/Workshops/1998/WS-98-08/WS98-08-005.pdf. Fecha de consulta: 07/05/13.

Breese, John S., Heckerman, David., and Kadie, Carl. (1998) ―Empirical Analysis of Predictive Algorithms for Collaborative Filtering‖. Recuperado de http://research.microsoft.com/pubs/69656/tr-98-12.pdf. Fecha de consulta 20/04/13.

Christakou, C., Stafylopatis, A. (enero 2007) ―A hybrid movie recommender system based on neural networks‖. En: Proceedings 5th International Conference on Intelligent Systems Design and Applications, ISDA, pp.500-505.

Ekstrand, D. Michael, Riedl, John T., and Konstan, Joseph A., (2010). ―Collaborative filtering recommender systems‖. En: Human-Computer Interaction. 4( 2) pp.81-173.

Herlocker, Jonathan L., Konstan, Joseph A., Borchers Al., and Riedl, John. (1999). ―An Algorithmic Framework for Performing Collaborative Filtering. Recuperado de: http://dl.acm.org/citation.cfm?id=963772. Fecha de consulta: 06/12/12.

Mladenic, D. (1999). ―Text-learning and Related Intelligent Agents: A Survey‖. Recuperado de: http://www.computer.org/csdl/mags/ex/1999/04/x4044-abs.html. Fecha de consulta: 20/01/13.

Nasraoui, O. and Pavuluri, M. (Mayo 2004). ―Accurate Web Recommendations Based on Profile-Specific URL-Predictor Neural Networks‖. En: In Proceedings of the International World Wide Web Conference.

Press, William., Flannery, Brian., Teukolsky, Saul., and Vettering, William. (1986) ―Numerical recipes: The art of Scientific Computing‖. New York: Cambridge University Press.

Sarwar, Badrul. Karypis, George. Konstan, Joseph. and Riedl, John. (2001). "Item-based Collaborative Filtering Recommendation Algorithms". Recuperado de: http://dl.acm.org/citation.cfm?id=372071. Fecha de consulta: 06/12/12.

Sarwar, Badrul. Karypis, George. Konstan, Joseph. and Riedl, John. (2000). ―Analysis of recommendation algorithms for e-commerce‖. Recuperado de: http://dl.acm.org/citation.cfm?id=352887. Fecha de consulta: 06/12/12.

Published

2014-08-04

How to Cite

Duran Xochimitl, Y., & Hernández Rodríguez, S. (2014). E-Commerce Application Using a Collaborative Filtering Algorithm. Universita Ciencia, 3(7), 133–146. https://doi.org/10.5281/zenodo.8264179